Assume a market with only two risky assets ( and ). Their expected returns and standard deviation are given below.
Use the slider to see the effect of changing the correlation between those asset returns ( 0.5 ) on the envelope of feasable portfolios.
What happens as you decrease the correlation between the returns of and ?
Are all feasable portfolios always efficient portfolios?
Assume that:
function seq (start , end , step) {
const length = Math . floor ((end - start) / step) + 1 ;
return Array (length) . fill () . map ((_ , i) => start + (i * step)) ;
}
// Calculate portfolios data
portfolios = {
const er_x = 0.12 ;
const er_y = 0.17 ;
const sd_x = 0.2 ;
const sd_y = 0.25 ;
const cov = rho * sd_x * sd_y ;
const w_x = seq ( - 1.4 , 1.4 , 0.01 ) ;
return w_x . map (wx => {
const wy = 1 - wx ;
return {
w_x : wx ,
w_y : wy ,
er_p : wx * er_x + wy * er_y ,
sd_p : Math . sqrt (
Math . pow (wx , 2 ) * Math . pow (sd_x , 2 ) +
Math . pow (wy , 2 ) * Math . pow (sd_y , 2 ) +
2 * wx * wy * cov
)
} ;
}) ;
}
// Individual assets data
asset_x = [{
er : 0.12 ,
sd : 0.2 ,
label : "X"
}]
asset_y = [{
er : 0.17 ,
sd : 0.25 ,
label : "Y"
}]
seq = Ζ (start, end, step)
portfolios =
Array(281) [Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , Object , β¦]
Plot . plot ({
caption : `Investment opportunity set` ,
x : { label : "Standard deviation" , zero : true , domain : [ 0 , 0.6 ]} ,
y : { label : "Expected return" , domain : [ 0 , 0.3 ]} ,
marks : [
Plot . ruleY ([ 0 ]) ,
Plot . lineY (portfolios , { x : "sd_p" , y : "er_p" , stroke : "blue" }) ,
Plot . dot (asset_x , { x : "sd" , y : "er" , r : 5 , fill : "red" }) ,
Plot . dot (asset_y , { x : "sd" , y : "er" , r : 5 , fill : "brown" }) ,
Plot . text (asset_x , { x : "sd" , y : "er" , text : "label" , dy : - 7 , lineAnchor : "bottom" , fontSize : 12 }) ,
Plot . text (asset_y , { x : "sd" , y : "er" , text : "label" , dy : - 7 , lineAnchor : "bottom" , fontSize : 12 }) ,
]
})
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 β Expected return 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Standard deviation β X Y Investment opportunity set
Plot . plot ({
caption : `Portfolio expected return as a function of the weight of X in the portfolio` ,
x : { label : "Weight of asset X in the portfolio" , zero : true } ,
y : { label : "Portfolio expected return" , domain : [ 0 , 0.3 ]} ,
marks : [
Plot . ruleY ([ 0 ]) ,
Plot . lineY (portfolios , { x : "w_x" , y : "er_p" , stroke : "orange" }) ,
]
})
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 β Portfolio expected return β1.0 β0.5 0.0 0.5 1.0 Weight of asset X in the portfolio β Portfolio expected return as a function of the weight of X in the portfolio
Plot . plot ({
caption : `Portfolio standard deviation as a function of the weight of X in the portfolio` ,
x : { label : "Weight of asset X in the portfolio" , zero : true } ,
y : { label : "Portfolio standard deviation" , domain : [ 0 , 0.6 ]} ,
marks : [
Plot . ruleY ([ 0 ]) ,
Plot . lineY (portfolios , { x : "w_x" , y : "sd_p" , stroke : "green" }) ,
]
})
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 β Portfolio standard deviation β1.0 β0.5 0.0 0.5 1.0 Weight of asset X in the portfolio β Portfolio standard deviation as a function of the weight of X in the portfolio